2024

  • S. Tachikawa, J. Ordonez-Miranda, L. Jalabert, Y. Wu, R. Anufriev, Y. Guo, B. Kim, H. Fujita, S. Volz, and M. Nomura, “Enhanced far-field thermal radiation through a polaritonic waveguide,” Phys. Rev. Lett., accepted.
  • B. Kim, F. Barbier–Chebbah, Y. Ogawara, L. Jalabert, R. Yanagisawa, R. Anufriev, and M. Nomura, “Anisotropy reversal of thermal conductivity in silicon nanowire networks driven by quasi-ballistic phonon transport,” ACS Nano, (accepted)
  • S. Koike, R. Yanagisawa, L. Jalabert, R. Anufriev, M. Kurosawa, T. Mori, and M. Nomura, “Planar-type SiGe thermoelectric generator with double cavity structure,” Appl. Phys. Lett. 124, 123902 (2024).
  • R. Anufriev, Y. Wu, S. Volz, and M. Nomura, “Quasi-ballistic thermal transport in silicon carbide nanowires,” Appl. Phys. Lett. 124, 022202 (2024).
  • 【特許】発明者:野村政宏, 他, 台湾特許登録番号:I831912, 発明の名称:異方熱伝導性樹脂部材及び熱伝送基板, 登録日:2024年2月11日

2023

  • B. Kim, H. Kurokawa, K. Sakai, K. Koshino, H. Kosaka, and M. Nomura,” Diamond optomechanical cavity with a color center for coherent microwave-to-optical quantum interfaces,” Phys. Rev. Appl. 20, 044037 (2023).
  • J. Ordonez-Miranda, Y. A. Kosevich, M. Nomura, and S. Volz, “Long-range, short-wavelength, and ultrafast heat conduction driven by three plasmon modes supported by graphene,” Phys. Rev. B 108, L161404 (2023).
  • S. Koike, R. Yanagisawa, M. Kurosawa, R. Rajveer, N. Tsujii, T. Mori, and M. Nomura, “Effect of nanostructuring on thermoelectric performance of SiGe thin films,” JJAP 62, 095001 (2023).
  • J. Cacheux, J. Ordonez-Miranda, A. Bancaud, L. Jalabert, D. Alcade, M. Nomura, and Y. Matsunaga, “Asymmetry of tensile versus compressive elasticity and permeability contributes to the regulation of exchanges in collagen gels,” Sci. Adv. 9, eadf9775 (2023).
  • X. Wu, X. Huang, L. Yang, Z. Zhang, Y. Guo, S. Volz, Q. Han, and M. Nomura, “Suppressed thermal transport in mathematically inspired 2D heterosystems”, Carbon 213, 118264 (2023).
  • X. Huang, S. Masubuchi, K. Watanabe, T. Taniguchi, T. Machida, and M. Nomura, “Super-ballistic width dependence of thermal conductivity in graphite nanoribbons and microribbons,” Nanomaterials 2023, 13, 1854 (2023).
  • J. Ordonez-Miranda, L. Jalabert, Y. Wu, S. Volz, and M. Nomura, “Analytical integration of the heater and sensor 3ω signals of anisotropic bulk materials and thin films,” J. Appl. Phys. 133, 205104 (2023).
  • Y. Guo, XP. Luo, Z. Zhang, S. Merabia, M. Nomura, and S. Volz, “Basal-plane heat transport in graphite thin films,” Phys. Rev. B 107, 195430 (2023).
  • Y. Cheng, Z. Fan, T. Zhang, M. Nomura, S. Volz, G. Zhu, B. Li, and S. Xiong, “Magic angle in thermal conductivity of twisted bilayer graphene,” Mater. Today Phys. 35, 101093 (2023).
  • J. Ordonez-Miranda, Y. A. Kosevich, B. J. Lee, M. Nomura, and S. Volz, “Plasmon Thermal Conductance and Thermal Conductivity of Metallic Nanofilms”, Phys. Rev. Appl. 19, 044046 (2023).
  • Z. Zhang, Y. Guo, M. Bescond, M. Nomura, S. Volz, and J. Chen, “Assessing phonon coherence using spectroscopy”, Phys. Rev. B 107, 155426 (2023).
  • X. Huang, Y. Guo, Y. Wu, S. Masubuchi, K. Watanabe, T. Taniguchi, Z. Zhang, S. Volz, T. Machida, and M. Nomura, “Observation of phonon Poiseuille flow in isotopically purified graphite ribbons”, Nat. Commun. 14, 2044 (2023).
  • J. Ordonez-Miranda, M. Coral, M. Nomura, and S. Volz, “Resonant thermal transport driven by surface phonon-polaritons in a cylindrical cavity”, Int. J. Thermophys. 44, 73 (2023).
  • D. Singh, R. Anufriev, and M. Nomura, “Parabolic mirrors collimating and focusing fluxes of thermal phonons, ” Appl. Phys. Lett. 122, 092203 (2023).
  • R. Anufriev, D. Ohori, Y. Wu, L. Jalabert, R. Yanagisawa, S. Samukawa, and M. Nomura, “Impact of nanopillars on phonon dispersion and thermal conductivity of silicon membranes,” Nanoscale 2023 15, 2248 (2023).
  • T. Zhu, Y. Wu, S. Li, F. Tonni, M. Nomura, and M. Zebarjadi, “Enhanced Thermoelectric Performance of Holey Silicon Thin Films using F4TCNQ Surface Doping,” Mater. Today Phys. 30, 100942 (2023).
  • 野村政宏, “ナノテクで熱を電気に:半導体熱制御技術と環境発電,” 生産研究75巻3号205-212 (2023).
  • 野村政宏, “格子振動の基礎,” 光と物質の相互作用ハンドブック, 第1部第5章, p.91-105, NTS (2023).
  • 【特許】発明者:野村政宏, 他, 米国特許登録番号:US11814568, 発明の名称:異方熱伝導性樹脂部材及びその製造方法, 登録日:2023年11月14日
  • 【特許】発明者:野村政宏, 他, 特許番号:7377497, 発明の名称:異方熱伝導性樹脂部材及びその製造方法, 登録日:2023年11月1日
  • 【特許】発明者:野村政宏, 柳澤亮人, 他, 特許番号:第7360120号, 発明の名称:熱電変換装置、電子機器および熱電変換装置の製造方法, 登録日:2023年10月3日
  • 【特許】発明者:野村政宏, 他, 特許番号:第7308481号, 発明の名称:コンクリート構造物における鋼材の電気防食装置および電気防食方法, 登録日:2023年7月6日

2022

  • S. Volz, M. Nomura, and J. Ordonez-Miranda, “Resonant polariton thermal transport along a vacuum gap,” Phys. Rev. Appl. 18, L051003 (2022).
  • S. Tachikawa, J. Ordonez-Miranda, Y. Wu, L. Jalabert, R. Anufriev, S. Volz, and M. Nomura, “In-plane surface phonon-polariton thermal conduction in dielectric multilayer systems,” Appl. Phys. Lett. 121, 202202 (2022).
  • X. Huang, Y. Guo, S. Volz, and M. Nomura, “Mapping phonon hydrodynamic strength in micrometer-scale graphite structures,” Appl. Phys. Express 15 105001 (2022).
  • Y. Wu, J. Ordonez-Miranda, L. Jalabert, S. Tachikawa, R. Anufriev, H. Fujita, S. Volz, and M. Nomura, “Observation of heat transport mediated by the propagation distance of surface phonon-polaritons over hundreds of micrometers,” Appl. Phys. Lett. 121, 112203 (2022).
  • J. Ordonez-Miranda, R. Anufriev, M. Nomura, and S. Volz, “Net heat current at zero mean temperature gradient,” Phys. Rev. B 106, L100102 (2022).
  • J. Ordonez-Miranda, Y. Wu, M. Nomura, and S. Volz, “Near-isotropic polariton heat transport along a polar anisotropic nanofilm,” iScience 25, 104857 (2022).
  • M. Nomura, V. Laude, and M. Maldovan, “Phononic Crystals at Various Frequencies,” APL Mater. 10, 050401 (2022).
  • T. Sato, Z. Milne, M. Nomura, N. Sasaki, R. Carpick, and H. Fujita, “Ultrahigh Strength and Shear-Assisted Separation of Sliding Nanocontacts Studied in situ,” Nat. Commun. 13, 2551 (2022).
  • Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, “How coherence is governing diffuson heat transfer in amorphous solids,” npj Comput Mater. 8, 96 (2022).
  • R. Anufriev, Y. Wu, J. Ordonez-Miranda, and M. Nomura, “Nanoscale limit of the thermal conductivity in crystalline silicon carbide membranes, nanowires, and phononic crystals,” NPG Asia Mater. 14, 35 (2022).
  • Y. Ishii, R. Yanagisawa, N. Watanabe, M. Nomura, N. Sasaki, and K. Miura, “Large lateral contact stiffness on Si nanopillar surfaces,” AIP Adv. 12, 025225 (2022).
  • M. Nomura, R. Anufriev, Z. Zhang, J. Maire, Y. Guo, R. Yanagisawa, and S. Volz, “Review of thermal transport in phononic crystals,” Mater. Today Phys. 22, 100613 (2022). (Invited review)
  • Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, “Heat conduction theory including phonon coherence,” Phys. Rev. Lett. 128, 015901 (2022).
  • K. Li, Y. Cheng, H. Wang, Y. Guo, Z. Zhang, M. Bescond, M. Nomura, S. Volz, X. Zhang, and S. Xiong, “Phonon resonant effect in silicon membranes with different crystallographic orientations,” Int. J. Heat Mass Transf. 183, 122144 (2022).
  • S. Jin, Z. Zhang, Y. Guo, J. Chen, M. Nomura, and S. Volz, “Optimization of interfacial thermal transport in Si/Ge heterostructure driven by machine learning,” Int. J. Heat Mass Transf. 182, 122014 (2022).
  • R. Anufriev and M. Nomura, “Phonon Engineering for Quantum Hybrid Systems,” Quantum Hybrid Electronics and Materials 15-24, Springer Nature (2022).
  • 野村政宏, 柳澤亮人, “フォノンエンジニアリングによるシリコン薄膜熱電発電デバイス開発,” オンサイトエネルギー ―エネルギーハーベスティングの要素技術と新展開―, 第4編第18章, CMC出版 (2022).
  • 【特許】発明者:野村政宏他, 特願2022-196861, 発明の名称:半導体装置、その製造方法及び配線構造体, 出願日:2022年12月9日

2021

  • Y. Guo, S. Tachikawa, S. Volz, M. Nomura, and J. Ordonez-Miranda, “Quantum of thermal conductance of nanofilms due to surface-phonon polaritons,” Phys. Rev. B. 104. L201407 (2021).
  • J. Ordonez-Miranda, Y. Guo, J. J. Alvarado-Gil, S. Volz, and M. Nomura, “Thermal-Wave Diode,” Phys. Rev. Appl. 16, L041002 (2021).
  • Y. Guo, M. Bescond, Z. Zhang, S. Xiong, K. Hirakawa, M. Nomura, and S. Volz, “Thermal conductivity minimum of graded superlattices due to phonon localization,” APL Mater. 9, 091104 (2021).
  • Y. Guo, Z. Zhang, M. Bescond, S. Xiong, M. Wang, M. Nomura, and S. Volz, “Size effect on phonon hydrodynamics in graphite microstructures and nanostructures,” Phys. Rev. B 104, 075450 (2021).
  • Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, “Thermal self-synchronization of nano-objects,” J. Appl. Phys. 130, 084301 (2021).
  • Y. Guo, M. Nomura, S. Volz, and J. Ordonez-Miranda, “Heat Transport Driven by the Coupling of Polaritons and Phonons in a Polar Nanowire,” Energies 14(16), 5110 (2021).
  • R. Anufriev, Y. Wu, and M. Nomura, “Ballistic heat conduction in semiconductor nanowires,” J. Appl. Phys. 130, 070903 (2021). (Invited Review)
  • Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, “Coherent thermal transport in nano-phononic crystals: An overview,” APL Mater. 9, 081102 (2021). (Invited Review)
  • Y. Cheng, M. Nomura, S. Volz, and S. Xiong, “Phonon-dislocation interaction and its impact on thermal conductivity,” J. Appl. Phys. 130, 040902 (2021).
  • R. Anufriev, J. Maire, and M. Nomura, “Review of coherent heat and phonon transport control in one-dimensional phononic crystals,” APL Mater. 9, 070701 (2021).(Invited Review)
  • H. Wang, Y. Cheng, Z. Fan, Y. Guo, Z. Zhang, M. Bescond, M. Nomura, T. Ala-Nissila, S. Volz, and S. Xiong, “Anomalous thermal conductivity enhancement in low dimensional resonant nanostructures due to imperfections,” Nanoscale 13, 10010-10015 (2021).
  • J. Ordonez-Miranda, S. Volz, and M. Nomura, “Surface Phonon-Polariton Heat Capacity of Polar Nanolms,” Phys. Rev. Appl. 15, 054068 (2021).
  • T.-H. Xiao, Z. Cheng, Z. Luo, A. Isozaki, K. Hiramatsu, T. Itoh, M. Nomura, S. Iwamoto, and K. Goda, “All-dielectric chiral-field-enhanced Raman optical activity,” Nat. Commun. 12, 3062 (2021).
  • Y. Guo, Z. Zhang, M. Bescond, S. Xiong, M. Nomura, and S. Volz, “Anharmonic phonon-phonon scattering at the interface between two solids by non-equilibrium Green’s function,” Phys. Rev. B 103, 174306 (2021).
  • Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, “Generalized decay law for particlelike and wavelike thermal phonons,” Phys. Rev. B 103, 184307 (2021).
  • H. Wang, Y. Cheng, M. Nomura, S. Volz, D. Donadio, X. Zhang, and S. Xiong, “Synergistic impeding of phonon transport through resonances and screw dislocations,” Phys. Rev. B 103, 085414 (2021).
  • Y. Guo, Z. Zhang, M. Nomura, S. Volz, and M. Wang, “Phonon vortex dynamics in graphene ribbon by solving Boltzmann transport equation with ab initio scattering rates,” Int. J. Heat Mass Transf. 169, 120981 (2021).
  • 森孝雄, 野村政宏,(解説) “磁性熱電材料/高性能化原理の開発およびIoTセンサー用動作電源への応用,” まぐね vol.16, No.6, 291 (2021).
  • 野村政宏, “ナノ構造を用いた熱電材料の高性能化,” 環境発電ハンドブック 第2版, 第3編第2章8, NTS (2021).
  • 野村政宏, “熱フォノンエンジニアリングによる熱電変換材料開発,” 次世代自動車の熱マネジメント, 第9章第12節, p. 545-p.551, 技術情報協会 (2021).

2020

  • Z. Zhang, Y. Ouyang, Y. Guo, T. Nakayama, M. Nomura, S. Volz, and J. Chen, “Hydrodynamic Phonon Transport in Bulk Crystalline Polymers,” Phys. Rev. B 102, 195302 (2020).
  • Y. Guo, M. Bescond, Z. Zhang, M. Luisier, M. Nomura and S. Volz, “Quantum mechanical modeling of anharmonic phonon-phonon scattering in nanostructures,” Phys. Rev. B 102, 195412 (2020).
  • Y. Wu, J. Ordonez-Miranda, S. Gluchko, R. Anufriev, D. De Sousa Meneses, L. Del Campo, S. Volz, and M. Nomura, “Enhanced thermal conduction by surface phonon-polaritons,” Science Advances 6, eabb4461 (2020). IF=12.5
  • R. Anufriev and M. Nomura, “Ray phononics: Thermal guiding, emission, and shielding using ballistic phonon transport,” Mater. Today Phys. 15, 100272 (2020). IF=10.4
  • R. Anufriev, S. Tachikawa, S. Gluchko, Y. Nakayama, T. Kawamura, L. Jalaber, and M. Nomura, “Cross-plane thermal conductivity in amorphous Si/SiO2 superlattices,” Appl. Phys. Lett. 117, 093103 (2020).
  • R. Yanagisawa, N. Tsujii, T. Mori, P. Ruther, O. Paul, and M. Nomura, “Nanostructured planar-type uni-leg Si thermoelectric generators,” Appl. Phys. Express 13, 095001 (2020).
  • S. Tachikawa, J. Ordonez-Miranda, Y. Wu, L. Jalabert, R. Anufriev, S. Volz, and M. Nomura, “High surface phonon-polariton in-plane thermal conductance along coupled films,” Nanomaterials 10, 1383 (2020).
  • S. Koike, R. Yanagisawa, M. Kurosawa, and M. Nomura, “Design of a Planar-type Uni-leg SiGe Thermoelectric Generator,” Jpn. J. Appl. Phys. 59 074003 (2020).
  • X. Huang, D. Ohori, R. Yanagisawa, R. Anufriev, S. Samukawa, and M. Nomura, “Coherent and incoherent impacts of nanopillars on the thermal conductivity in silicon nanomembranes,” ACS Appl. Mater. Interfaces 12, 25478 (2020). IF=8.5
  • R. Anufriev, J. Ordonez-Miranda, and M. Nomura, “Measurement of the phonon mean free path spectrum in silicon membranes at different temperatures using arrays of nanoslits,” Phys. Rev. B 101, 115301 (2020).
  • 【特許】発明者:野村政宏, 渡辺宜朗, 出願番号:特願2020-183467号, 発明の名称:複合材料及びその製造方法,エンジンシリンダー,エンジン,車両,パイプ,鍋,ヒートシンク並びに排気管,出願日:2020年11月2日.
  • 【特許】発明者:野村政宏他,出願番号:PCT/JP2020/003265,発明の名称:異方熱伝導性樹脂部材及び熱伝送基板,出願日:2020年1月29日.

2019

  • N. Okamoto, R. Yanagisawa, R. Anufriev, Md. M. Alam, K. Sawano, M. Kurosawa, and M. Nomura, “Semiballistic thermal conduction in polycrystalline SiGe nanowires,” Appl. Phys. Lett. 115, 253101 (2019).
  • X. Huang, S. Gluchko, R. Anufriev, S. Volz, and M. Nomura, “Thermal conductivity reduction in silicon thin film with nanocones,” ACS Appl. Mater. Interfaces 11, 34394 (2019). IF=8.5
  • Y. Zhang, B. Qiu, N. Nagai, M. Nomura, S. Volz, and K. Hirakawa, “Enhanced thermal sensitivity of MEMS bolometers integrated with nanometer-scale hole array structures,” AIP Advances 9, 085102 (2019).
  • R. Anufriev, S. Gluchko, S. Volz, and M. Nomura, “Probing ballistic thermal conduction in segmented silicon nanowires,” Nanoscale, 11, 13407 (2019). IF=7.2
  • M. Nomura, R. Yanagisawa, P. Zimmermann, P. Ruther, and O. Paul, “Design of Planar-type Si Thermoelectric Generators with Phononic Crystal Patterning, ” Sensors and Materials 31, 2803-2810 (2019).
  • A. George, R. Yanagisawa, R. Anufriev, J. He, N. Yoshie, N. Tsujii, Q. Guo, T. Mori, S. Volz, and M. Nomura, “Thermoelectric enhancement of silicon membranes by ultrathin amorphous films,” ACS Appl. Mater. Interfaces 11, 12027 (2019). IF=8.5
  • R. Anufriev and M. Nomura, “Coherent Thermal Conduction in Silicon Nanowires with Periodic Wings,” Nanomaterials 9, 142 (2019). IF=4.0
  • S. Gluchko, R. Anufriev, R. Yanagisawa, S. Volz, and M. Nomura, “On the reduction and rectification of thermal conduction using phononic crystals with pacman-shaped holes,” Appl. Phys. Lett. 114, 023102 (2019).
  • 【特許】発明者:野村政宏他,出願番号:特願2019-103736,発明の名称:コンクリート構造物における鋼材の電気防食装置および電気防食方法,出願日:2019年6月3日.
  • 【特許】発明者:野村政宏,柳澤亮人他,出願番号:2019-099309,発明の名称:熱電変換装置,電子機器および熱電変換装置の製造方法,出願日:2019年5月28日.
  • 【特許】発明者:三浦浩治,野村政宏,出願番号:特願2019-036786,発明の名称:超潤滑を有する構造体に関する発明,出願日:2019年2月28日.
  • 【特許】発明者:野村政宏他,出願番号:PCT/JP2019/007586,発明の名称:異方熱伝導性樹脂部材及び熱伝送基板,出願日:2019年2月27日.
  • 野村政宏,“フォノンエンジニアリングによるシリコン薄膜熱電材料の高性能化,” NTS,「サーマルデバイス汎用化技術集成」分担執筆,第7章2節,p. 278-281 (2019).
  • 野村政宏,“フォノニック結晶ナノ構造による熱伝導制御 ~さらなる熱伝導率の向上のために~,” 「高熱伝導材料の開発」,技術情報協会,第5章第3節,p. 254-258 (2019).
  • 野村政宏,“環境発電に関わる応用物理学会の活動,” O plus E,41,514 (2019).

2018

  • R. Anufriev and M. Nomura, “Phonon and heat transport control using pillar-based phononic crystals,” Sci. Technol. Adv. Mater. 19, 867-870 (2018). Review Article
  • R. Anufriev, S. Gluchko, S. Volz, and M. Nomura, “Quasi-ballistic heat conduction due to levy phonon flights in silicon nanowires,” ACS Nano 12, 11928 (2018). IF=13.7
  • M. Nomura, J. Shiomi, T. Shiga, and R. Anufriev, “Thermal phonon engineering by tailored nanostructures,” Jpn. J. Appl. Phys. 57, 080101 (2018). Invited Review Article
  • S. Hu, Z. Zhang, P. Jiang, J. Chen, S. Volz, M. Nomura, and B. Li, “Randomness-Induced Phonon Localization in Graphene Heat Conduction,” J. Phys. Chem. Lett. 9, 3959-3968 (2018). IF = 8.9
  • J. Maire, R. Anufriev, T. Hori, J. Shiomi, S. Volz, and M. Nomura, “Thermal conductivity reduction in silicon fishbone nanowires,” Sci. Rep. 8, 4452 (2018).
  • A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, and K. Usami, “Brillouin light scattering by magnetic quasi-vortices in cavity optomagnonics,” Phys. Rev. Lett. 120, 133602 (2018).
  • 野村政宏,Roman Anufriev,“フォノニックナノ構造を用いた集熱の実現,” 応用物理 87,745 (2018).
  • 【特許】発明者:野村政宏他, 出願番号:特願2018-036778,発明の名称:異方熱伝導性樹脂部材及びその製造方法,出願日:2018年3月1日.

2017

  • R. Anufriev, R. Yanagisawa, and M. Nomura, “Aluminium nanopillars reduce thermal conductivity of silicon nanobeams,” Nanoscale 9, 15083 (2017).
  • J. Maire, R. Anufriev, A. Ramiere, R. Yanagisawa, S. Volz, and M. Nomura, “Heat conduction tuning by wave nature of phonons,” Science Advances 3, e1700027 (2017). IF=12.8 [プレスリリース]
  • R. Anufriev, A. Ramiere, J. Maire, and M. Nomura, “Heat guiding and focusing using ballistic phonon transport in phononic nanostructures,” Nature Communications 8, 15505 (2017). IF=12.4 [プレスリリース]
  • M. Verdier, R. Anufriev, A. Ramiere, K. Termentzidis, and D. Lacroix, “Thermal conductivity of phononic membranes with aligned and staggered lattices of holes at room and low temperatures,” Phys. Rev. B 95, 205438 (2017).
  • R. Anufriev and M. Nomura, “Heat conduction engineering in pillar-based phononic crystals,” Phys. Rev. B. 95, 155432 (2017).
  • J. Maire, R. Anufriev, and M. Nomura, “Ballistic thermal transport in silicon nanowires,” Scientific Reports 7, 41794 (2017).
  • R. Yanagisawa, J. Maire, A. Ramiere, R. Anufriev, and M. Nomura, “Impact of limiting dimension on thermal conductivity of one-dimensional silicon phononic crystals,” Appl. Phys. Lett. 110, 133108 (2017).
  • 野村政宏,“フォノンエンジニアリングに基づいたナノ構造化シリコン薄膜熱電材料の開発,” 日本熱電学会誌 14,12-16 (2017).
  • 野村政宏,“フォノンエンジニアリングによるナノ加工シリコン熱電変換材料開発,” NTS,「フォノンエンジニアリング」分担執筆,第1章第2節,p. 29-40.
  • 【特許】発明者:野村政宏,Roman Anufriev,柳澤亮人,Anthony George,出願番号:特願2017-154070,発明の名称:熱電変換材料およびその製造方法,出願日:2017年8月9日.
  • 【特許】発明者:野村政宏,Roman Anufriev,A. Ramiere,J. Maire,出願番号:特願2017-095459,発明の名称:熱流方向性制御構造,出願日:2017年5月12日.

2016

  • M. Nomura, J. Nakagawa, K. Sawano, J. Maire, and S. Volz, “Thermal conduction in Si and SiGe phononic crystals explained by phonon mean free path spectrum,” Appl. Phys. Lett. 109, 173104 (2016).
  • M. Nomura, “Near-field radiative heat transfer: The heat through the gap,” Nature Nanotechnology 11, 496 (2016).
  • A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y. Nakamura, “Cavity Optomagnonics with Spin-Orbit Coupled Photons,” Phys. Rev. Lett. 116, 223601 (2016).
  • M. Nomura, “Control of Phonon Transport by Phononic Crystals and Application to Thermoelectric Materials,” Materials Transactions 57, 555 (2016).
  • Y. Kage, H. Hagino, R. Yanagisawa, J. Maire, K. Miyazaki, and M. Nomura, “Thermal phonon transport in Si thin film with dog-leg shaped asymmetric nanostructures,” Jpn. J. Appl. Phys. 55, 085201 (2016).
  • R. Anufriev, J. Maire and M. Nomura, “Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures,” Phys. Rev. B. 93, 045411 (2016).
  • R. Anufriev and M. Nomura, “Reduction of thermal conductance by coherent phonon scattering in two-dimensional phononic crystals of different lattice types,” Phys. Rev. B. 93, 045410 (2016).
  • S. Volz, J. Shiomi, M. Nomura, and K. Miyazaki, (Invited Paper) “Heat conduction in nanostructured materials,” J. of Therm. Sci. and Technol. 11, 15-00529 (2016).
  • M. Nomura, “Heat Conduction Control by Phononic Crystals,” Chemical Engineering of Japan, 80, 560 (2016).

2015

  • J. Nakagawa, Y. Kage, T. Hori, J. Shiomi and M. Nomura, “Crystal structure dependent thermal conductivity in two-dimensional phononic crystal nanostructures,” Appl. Phys. Lett. 107, 023104 (2015).
  • R. Anufriev and M. Nomura, “Thermal conductance boost in phononic crystal nanostructures,” Phys. Rev. B. 91, 245417 (2015).
  • M. Nomura, Y. Kage, D. Muller, D. Moser, and O. Paul, “Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications,” Appl. Phys. Lett. 106, 223106 (2015).
  • M. Nomura, Y. Kage, J. Nakagawa, T. Hori, J. Maire J. Shiomi, R. Anufriev, D. Moser, O. Paul, “Impeded thermal transport in Si multiscale hierarchical architectures with phononic crystal nanostructures,” Phys. Rev. B 91, 205422 (2015).
  • M. Nomura, “Phononic band engineering for thermal conduction control and similarity with photonic band engineering,” J. of Microsys. Technol. 22, 473 (2015).
  • M. Sakata, T. Hori, T. Oyake, J. Maire, M. Nomura, J. Shiomi, “Tuning thermal conductance across sintered silicon interface by local nanostructures,” Nano Energy 13, 601 (2015).
  • M. Nomura, J. Nakagawa, Y. Kage, J. Maire, D. Moser, and O. Paul, “Thermal phonon transport in silicon nanowires and two-dimensional phononic crystal nanostructures,” Appl. Phys. Lett. 106, 143102 (2015).
  • M. Sakata, T. Oyake, J. Maire, M. Nomura, E. Higurashi, and J. Shiomi, “Thermal conductance of silicon interfaces directly bonded by room-temperature surface activation,” Appl. Phys. Lett. 106, 081603 (2015).
  • M. Nomura, “Phonon Engineering and Application to Thermoelectrics,” Seisankenkyu 67, 525 (2015).
  • 野村政宏,“フォノニック結晶によるフォノン輸送制御と熱電材料への応用,” 日本金属学会誌 79,555-561 (2015).
  • 野村政宏,“フォトニクスからフォノニクスへ~熱フォノニクスによる熱伝導制御~,” 日本機械学会誌 77,7-12 (2015).
  • 野村政宏,“ナノ加工シリコン熱電変換,” 桑野博喜,竹内敬治編集「エネルギーハーベスティングの設計と応用展開」第2編第6章,シーエムシー出版(2015年10月出版)

2014

  • J. Maire and M. Nomura, “Reduced Thermal Conductivities of Si 1D periodic structure and Nanowires,” Jpn. J. of Appl. Phys., 53, 06JE09 (2014).
  • M. Nomura and J. Maire, “Towards heat conduction control by phononic nanostructures,” Thermal Science and Engineering, 53, 67-72 (2014).
  • M. Nomura and J. Maire, “Mechanism of the Reduced Thermal Conductivity of Fishbone-Type Si Phononic Crystal Nanostructures,” J. Electron. Mater. 44, 1426–1431 (2014)
  • 野村政宏,“ナノ構造化によるコヒーレント熱伝導制御と熱電変換応用” 固体物理,第49巻 10号,1 (2014).

2013

  • W. Shimizu, N. Naomi, K. Kohno, K. Hirakawa, and M. Nomura, “Waveguide coupled air-slot photonic crystal nanocavity for optomechanics,” Opt. Express., 21, 21961-21969 (2013).
  • 野村政宏,“フォトニック結晶ナノ共振器のオプトメカニクスへの応用,” 応用物理,82,9月号,p. 764-768 (2013).

2012

  • M. Nomura, “GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators,” Optics Express, 20, 5204-5212 (2012).
  • M. Nomura and Y. Arakawa, “Shaking quantum dots,” Nature Photonics, 6, 9 (2012). (News and Views)
  • Y. Arakawa, S. Iwamoto, M. Nomura, A. Tandaechanurat, and Y. Ota, (invited paper), “Cavity quantum electrodynamics and lasing oscillation in single quantum dot-photonic crystal nanocavity coupled systems,” IEEE. J. Sel. Top. Quant. Electron. , 18, 1818-1829 (2012).

2011

  • K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett., 106, 057402 (2011).
  • A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nature Photonics, 5, 91 (2011).
  • M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Design of a high-Q H0 photonic crystal nanocavity for cavity QED,” Phys. Stat. Sol. C, 8, 340-342 (2011).

2010

  • M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Zero-cell photonic crystal nanocavity laser with quantum dot gain,” Appl. Phys. Lett., 97, 191108 (2010).
  • M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum dot-nanocavity system,” Nature Physics, 6, 279-283 (2010).
  • Y. Igarashi, M. Shirane, Y. Ota, M. Nomura, N. Kumagai, S. Ohkouchi, A. Kirihara, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Spin dynamics of excited trion states in a single InAs quantum dot,” Phys. Rev. B. 81, 245304 (2010).
  • M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express, 18, 8144-8150 (2010).
  • K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Design, fabrication and optical characterization of GaAs photonic crystal nanocavity lasers with InAs quantum dots gain wafer-bonded onto Si substrates,” Physica E, 42, 2560 (2010).
  • M. Shirane, Y. Igarashi, Y. Ota, M. Nomura, N. Kumagai, S. Ohkouchi, A. Kirihara, S. Ishida, S. Iwamoto, S. Yorozu, Y. Arakawa, “Charged and neutral biexciton-exciton cascade in a single quantum dot within a photonic bandgap,” Physica E, 42, 2563-2566 (2010).
  • N. Kumagai, S. Ohkouchi, S. Nakagawa, M. Nomura, Y. Ota, M. Shirane, Y. Igarashi, S. Yorozu, S. Iwamoto, and Y. Arakawa, “Suppression of indefinite peaks in InAs/GaAs quantum dot spectrum by low temperature Indium-flush method,” Physica E, 42, 2753 (2010).
  • N. Kumagai, S. Ohkouchi, M. Shirane, Y. Igarashi, M. Nomura, Y. Ota, S. Yorozu, S. Iwamoto and Y. Arakawa, “Neutralization of positively charged excitonic state in single InAs quantum dot by Si delta doping,” J. Phys. Conf. Ser., 245, 012088 (2010).

2009

  • M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express, 17, 15975-15982 (2009).
  • M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Observation of unique photon statistics of single artificial atom laser,” Physica E, 42, 2489-2492 (2009).
  • Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Investigation of the spectral triplet in strongly coupled quantum dot-nanocavity system, “Appl. Phys. Express, 2, 122301 (2009).
  • A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Demonstration of high-Q (>8,600) three-dimensional photonic crystal nanocavity embedding quantum dots,” Appl. Phys. Lett., 94, 171115 (2009).
  • K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express, 17, 7036-7042 (2009).
  • Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S.Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
  • D. F. Dorfner, S. Iwamoto, M. Nomura, S. Nakayama, J. J. Finley, G. Abstreiter, and Y. Arakawa, “Outcoupling of light generated in a monolithic silicon photonic crystal nanocavity through a lateral waveguide,” Jpn. J. Appl. Phys., 48, 062003 (2009).
  • M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express, 17, 640-648 (2009).

2008

  • Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, “Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity,” Appl. Phys. Lett., 93, 183114 (2008).
  • K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nature Photonics, 2, 688-692 (2008).
  • M. Nomura, Y. Ota, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Large Vacuum Rabi Splitting in Single Self-Assembled Quantum Dot-Nanocavity System,” Appl. Phys. Express, 1, 072102 (2008).
  • M. Nomura, S. Iwamoto, and Y. Arakawa, “Prerequisites of Nanocavities for Single Artificial Atom Laser,” Phys. Stat. Sol. (c), 5, 2831 (2008).
  • M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Ultralow threshold photonic crystal nanocavity laser,” Physica E, 40, 1800 (2008).
  • Y. Arakawa, S. Iwamoto, S. Kako, M. Nomura, D. Guimard, “Advances in quantum dots for classical and non-classical light sources,” Chinese Opt. Lett., 6, 718-723 (2008).
  • A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express 16, 448 (2008).

2007

  • M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor,” Phys. Rev. B, 75, 195313-1-6, (2007).

2006

  • M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express, 14, 6308-6315 (2006).
  • M. Nomura, S. Iwamoto, M. Nishioka, S. Ishida, and Y. Arakawa, “Highly efficient optical pumping of photonic crystal nanocavity lasers using cavity resonant excitation,” Appl. Phys. Lett, 89, 161111 (2006).
  • M. Nomura, S. Iwamoto, T. Yang, S. Ishida, and Y. Arakawa, “Enhancement of light emission from single quantum dot in photonic crystal nanocavity by using cavity resonant excitation,” Appl. Phys. Lett. 89, 241124(2006).
  • M. Nomura, S. Iwamoto, T. Nakaoka, S. Ishida, and Y. Arakawa, “Cavity Resonant Excitation of InGaAs quantum dots in Photonic Crystal Nanocavities,” Jpn. J. Appl. Phys., 45, 8A, 6091-6095 (2006).
  • M. Nomura, S. Iwamoto, T. Nakaoka, S. Ishida, and Y. Arakawa, “Localized excitation of InGaAs quantum dots by utilizing a photonic crystal nanocavity,” Appl. Phys. Lett., 88141108-141110 (2006).

2005

  • M. Nomura, Y. Arakawa, T. Shimura, and K. Kuroda, “Optical control of transmittance by photo-induced absorption effect in InGaN/GaN structures,” Jpn. J. Appl. Phys. 44, 7238-7243 (2005).
  • T. Innami, R. Fujimura, M. Nomura, T. Shimura, and K. Kuroda, “Two Beam Coupling in Semi-Insulating GaN Film Using Electroabsorption Effect,” Opt. Rev.,12, 448-450 (2005).
  • M. Nomura, S. Ashihara, M. Nishioka, T. Shimura, K. Kuroda, M. Arita, and Y. Arakawa, “Temporal behavior of absorption changes and yellow luminescence in thin InGaN epilayers,” International Symposium on Compound Semiconductors 2004, Proceedings Institute of Physics Conference Series, 184, 423-426 (2005).

2004

  • M. Nomura, M. Arita, S. Ashihara, M. Nishioka, Y. Arakawa, T. Shimura, and K. Kuroda, “Photo-induced absorption change for InGaN film by violet diode,” Phys. Stat. Sol. (b), 241, 2703 (2004).
  • M. Nomura, M. Arita, S. Ashihara, M. Nishioka, Y. Arakawa, T. Shimura, and K. Kuroda, “Differential absorption in InGaN Multiple Quantum Wells and Epilayers Induced by Blue-Violet Laser Diode,” Jpn. J. Appl. Phys. 43, L340-342 (2004).

2003

  • M. -S. Nomura, M. Arita, S. Ashihara, S. Kako, M. Nishioka, Y. Arakawa, T. Shimura, and K. Kuroda, “Thickness dependence of transient absorption spectrum for InGaN thin films,” Phys. Stat. Sol. (c), 0, 2606 (2003).
  • M. Nomura, M. Arita, Y. Arakawa, S. Ashihara, S. Kako, M. Nishioka, T. Shimura, and K. Kuroda, “Nondegenerate pump and probe spectroscopy in InGaN thin films,” J. Appl. Phys. 94, 6468 (2003).

2002

  • J. -N. Fehr, M. -A. Dupertuis, T. P. Hessler, L. Kappei, D. Marti, F. Salleras, M. -S. Nomura, B. Deveaud, J. -Y. Emery, and B. Dagens, “Hot Phonons and Auger Related Carrier Heating in Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron., 38, 674-681 (2002).
  • M. -S. Nomura, F. Salleras, M. A. Dupertuis, L. Kappei, D. Marti, B. Deveaud, J. -Y. Emergy, A. Crottini, B. Dagens, T. Shimura, and K. Kuroda, “Density clamping and lon­gitudinal spatial hole burning in a gain-clamped semiconductor optical amplifier,” Appl. Phys. Lett., 81, 2692 (2002).